Strong Mori and Noetherian properties of integer-valued polynomial rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Rings of Integer-valued Polynomials

The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is...

متن کامل

What are Rings of Integer-Valued Polynomials?

Every integer is either even or odd, so we know that the polynomial f(x) = x(x− 1) 2 is integervalued on the integers, even though its coefficients are not in Z. Similarly, since every binomial coefficient ( k n ) is an integer, the polynomial ( x n ) = x(x− 1)...(x− n+ 1) n! must also be integervalued. These polynomials were used for polynomial interpolation as far back as the 17 century. Inte...

متن کامل

Integer-valued Polynomials over Quaternion Rings

When D is an integral domain with field of fractions K, the ring Int(D) = {f(x) ∈ K[x] | f(D) ⊆ D} of integer-valued polynomials over D has been extensively studied. We will extend the integer-valued polynomial construction to certain noncommutative rings. Specifically, let i, j, and k be the standard quaternion units satisfying the relations i = j = −1 and ij = k = −ji, and define ZQ := {a+bi+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2004

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(03)00131-2